top of page

Dust...

una noche de matemáticas, danza y una colección de repertorio

El espectáculo de esta noche presenta la pieza insignia de Dance Equations, DUST... interpretada por el equipo de actuación DEKO (Dance Equations y Kompany)

 

Dust... explora la intersección del movimiento y la filosofía, las matemáticas y la ciencia. A través del movimiento, el sonido, las ilustraciones de video y las animaciones, y el texto, Dust… examina algunas de las teorías e ideas más influyentes que nos han llevado a nuestro ser presente. En primer lugar, al proponer una serie de números experimentados a través del movimiento, el trabajo explora las ecuaciones de la mecánica newtoniana, la recurrencia de la secuencia de Fibonacci y la proporción áurea, antes de proponer una consideración de la Teoría Computacional de la Mente, un paradigma dominante en psicología y neurociencia. Después de explorar si nuestras mentes son similares al funcionamiento interno de una computadora, y las implicaciones que esta comparación tiene para los conceptos de libre albedrío y elección racional, Dust...rompe con los teoremas matemáticos para revelar la alegría de simplemente ser.

52.jpg

Sobre Dance Equations

Dance Equations ofrece cursos en línea además de recursos como los libros electrónicos junto con materiales de apoyo como videos y música. Usando la danza, las y los enseñantes aprenden a dirigir a los estudiantes a través de lecciones que exploran temas matemáticos. La programa ayuda a educadores a entender la danza y cómo enseñar las matemáticas usando la danza como apoyo didáctico. Además de explicar cada plan de lección en detalle, se proporciona un glosario de términos de baile, hojas de trabajo, ayudas didácticas adicionales y rúbricas.

Directores(as)

El Orden del Espectáculo

Dust... (Polvo)

Coreógrafa: Miranda Abbott

Bailarines(as): Fabiola Quirós, Omar Pineda, Sebastián Sedó Abdala, Sergio Vargas Nunez, Tatiana Sanchez Monge, Yamile García Afiune (Suplente: Celeste Jimena Montero Sánchez)

Música: Rick Torres

Poesía: Evert Houston (traducción de Rick Torres)

Actor de Voz: Bruno Camacho Jiménez

Vestuario: Laura Zamora

Mist Me

Concepto, Director, Coreógrafa y Intérprete: Karen Kaeja
Director colaborador, director de fotografía - Sección 1: Allen Kaeja
Director colaborador, director de fotografía - Secciones 2 y 3: Drew Berry
Compositor y Violonchelista: Cheryl Ockrant
Pianista: Steve Koven
Voz: Emma Thornton Ockrant
Vestuario: Karen Kaeja
Asesor Creativo: Drew Berry
Asesor de edición creativa: Allen Kaeja
Productor ejecutivo: Karen Kaeja
Productor: Kaeja d'Dance

Left Behind

Coreógrafa: Fabio Adoriso

Bailarine: Roger Cuadrado

Música: Liebestraum de Franz Liszt

Tampopo Redux

Concepto, Co-Directora, Coreógrafa: Mistaya Hemingway

Director: Alan Kohl

Director de fotografía/colorista: Kes Tagney

Intérpretes(as): Tony Chong, Mark Eden-Towle, Mistaya Hemingway, Mariusz Ostrowski,Carol Prieur, James, Viveiros

Compositor: Nils Frahm

Flight (Vuelo)

Choreographer: Miranda Abbott

Bailarines(as): Fabiola Quirós, Omar Pineda, Yamile García Afiune

Música:  Asha y Florac de Pantha du Price

Vestuario:  Laura Zamora

Diseño de iluminación por: Alvaro Piedra
Asistente de iluminación: Luis Romero
Proyecciones de video: Gustavo Abarca
Personal técnico de teatro: Ronald Araya, Henry Hernández, Alfredo Martinez, Shirley Benavides

Bailarines(as)

Image.jpeg

Fabiola

Quirós

sergio.png

Sergio Vargas Nunez

Omar.png

Omar

Pineda

tati.jpeg

Tatiana Sanchez Monge

seb.png

Sebastián Sedó Abdala

yamile.jpeg

Yamile García Afiune

Colaboradores(as)

celeste.jpg

Celeste Montero Sánchez

Bruno.jpeg

Bruno Camacho Jiménez

gustavo.jpeg

Gustavo

Abarca

Bruno.jpeg

Bruno Camacho Jiménez

Dust...

By Evert Houston

(Original English Version)

(Mirrors) Dust to dust… fragment by fragment… a collection of what’s cluttered. I begin as a beginner, the way in which we all began… unified as one. Then… when I was whole… I would transform in… two – The Question. And… The Answer? I must trek back through my traces; retrace my steps through the dust… And I must: perceive and place each new beautiful and perfect particle. Pace by pace by pace to a new place of understanding… Maintain the plane of these patterns, Learn the language, Know the numbers to equate and see… what this Math can truly be… Grid (Geometry) Geometry has two great treasures: one is the Theorem of Pythagoras; the other, the division of a line into extreme and mean ratio. The first we may compare to a measure of gold; the second we may name a precious jewel. (Kepler) They say a man may search for a woman but what is the woman to do in the meantime… All want a chance to connect, to create community and continue… as time ticks on, the world rushes round from birth to death to birth to death… one even might say the pattern is predictable. Where does the search lead and what leaders have gone before us? Geometry is a part of mathematics concerned with questions of size, shape, relative position of figures and with properties of space. The Pythagorean Theorem states that the sum of the squares of the lengths of the sides of a right angle triangle is equal to the square of the length of the hypotenuse. Analytic geometry is an alternative method for formalizing geometry developed by René Descartes. Sacred geometry is geometry used in the design of sacred architecture and sacred art. The basic belief is that geometry and mathematical ratios, harmonics and proportions are also found in music, light, and cosmology. They say that John Von Neumann made major contributions to set theory, functional analysis, quantum mechanics, continuous geometry, economics, game theory, computer science, numerical analysis, hydrodynamics and statistics. They say that Von Neumann is commonly referred to as the antithesis for the long hair mathematician. They say he threw large parties and played tennis in a grey flannel business suit. They say that only boys… Only boys are good at Math… so there’s no use in talking about: Theano’s principle of the Golden Mean, Florence Nightingale’s polar-area diagram, Emilie du Châtelet’s interpretation and translation of Leibniz and Newton in her Institutions de physique, Maria Agnesi’s Analytical Institutions, Sophie Germain’s secret identity and number theory, Mary Fairfax Somerville’s The Mechanism of the Heavens, Lady Lovelace Ada Byron’s Analytical Engine as the inspiration behind the first computer program, and let’s not forget… Charlotte Angas Scott, Ellen Amanda Hayes, Amalie Emmy Noether, Mary G. Ross, the first female Native American engineer… (Circles) A circle is a simple shape of Euclidean geometry consisting of those points in a plane which are equidistant from a given point called the centre. The common distance of the points of a circle from its center is called its radius. Circles are simple closed curves which divide the plane into two regions, an interior and an exterior. In everyday use, the term "circle" may be used interchangeably to refer to either the boundary of the figure, known as the perimeter, or to the whole figure including its interior. However, in strict technical usage, "circle" refers to the perimeter while the interior of the circle is called a disk. The circumference of a circle is the perimeter of the circle. There was a time when the earth was considered the centre of our universe. In 1543 Copernicus published his observations that the motions of the planets could be explained more simply by assuming that all planets move around the sun, the earth is just another planet. Then by 1596, Kepler described the orbits more accurately using ellipses and in 1609 Galileo used the spyglass as a telescope to observe the heavens and gravity. However, it required Newton’s description of planetary motion with his law of gravitation before the story of astronomy was most dramatically told through Calculus. Squaring the circle is a problem proposed by ancient geometers. It is the challenge of constructing a square with the same area as a given circle by using only a finite number of steps with a compass and straightedge. More abstractly and more precisely, it may be taken to ask whether specified axioms of Euclidean geometry concerning the existence of lines and circles entail the existence of such a square. Go down deep enough into anything and you will find mathematics. (Dean Schlicter) Infinitesimal steps to start… as I carefully caress along the curves of your mysterious quantities. There’s something around the corner of those calculations… Our circular potential poised as you alter my input, flex me in function… measure me close and prove us elegant. The universe cannot be read until we have learnt the language and become familiar with the characters in which it is written. It is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. (Galileo Galilei) (Fibonocci Sequence) I must retrace my steps to learn the language of our universe, converse with the cosmos… build up from the base, start from nothing: 0.1.2.3.4.5. 6.7.8.9… The Fibonacci numbers are the numbers in the following sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 197… By definition, the first two Fibonacci numbers are 0 and 1, and each remaining number is the sum of the previous two. Like every sequence defined by linear recurrence, the Fibonacci numbers have a closed-form solution. The Fibonacci recursion is similar to the defining equation of the golden ratio in the form which is also known as the generating polynomial of the recursion. In mathematics and the arts, two quantities are in the golden ratio if the ratio of the sum of the quantities to the larger quantity is equal to the ratio of the larger quantity to the smaller one. The golden ratio is an irrational mathematical constant, approximately 1.6180339887. It is a universal law in which is contained the ground-principle of all formative striving for beauty and completeness in the realms of both nature and art, and which permeates, as a paramount spiritual ideal, all structures, forms and proportions, whether cosmic or individual, organic or inorganic, acoustic or optical; which finds its fullest realization, however, in the human form. (Adolf Zeising 1854.) The Fibonacci numbers appear everywhere in Nature, from the leaf arrangement in plants, to the pattern in the florets of a flower, the bracts of a pinecone, or the scales of a pineapple. The Fibonacci numbers are therefore applicable to the growth of every living thing, including a single cell, a grain of wheat, a hive of bees, and even all of mankind. (Stan Grist) The golden ratio is often denoted by the Greek letter phi, usually lower case: Other names frequently used for the golden ratio are the golden section and golden mean. Other terms encountered include extreme and mean ratio, medial section, divine proportion, divine section, golden proportion, golden cut, golden number… And golden girls… and golden boys and golden grandparents and golden anniversaries and golden eggs and golden rings and a golden brown tan and then toast and golden oldies and gold’n the Yukon Territories!!! And I was free to choose… and I was charged with choice… calculated with care and carefree to take every last bit of your beautiful understanding… do it out right and sum up to see this extraordinary collection of individuals right in front of me… elegantly proven and to the number… equal. And in unity… and in community… most masterful mathematicians spend a majority of their time mulling over elaborate equations… such as: a walk along the beach, a sunny Sunday breakfast, a hand written letter from a loved one, the crackle of the fire as your wet socks dry, just the right wine at dinner, satiated, that soulful song sung soooooo sweetly, those playful words passed along discretely, arms up and locks lashing… whatever blows your hair back! A place at the table, a time for tenderness, triple score, not a single want for more, an elegant circus, humour with purpose, compassion and grace written all across your face, the patience to take true time and space, healthy and whole, another happy happenstance, time for the two of us, knowing I’m here when you need me, love and passion with abandon completely, and in wonderful abandon… you are my companion, you are my companion…

Patrocinadores(as)

BL.png

Donaciones para Libros Escolares

donate.jpeg

Libros Para Todos dona libros de texto a las escuelas todos los años. En los últimos años, los precios de los libros han pasado de 6.000 colones al precio actual de este año de 12.000 por paquete que incluye español, estudios sociales, matemáticas y ciencias. El precio del año pasado a este año subió un 50%. Posteriormente, se vieron obligados a decidir a qué escuelas podían ayudar y a cuáles no.

Hay 2 escuelas a las que les gustaría ayudar a suministrar libros este año que su presupuesto no puede financiar.

Si desea más información sobre los libros de texto puede ingresar https://librosparatodos.cr  o contactar Jéssica Bogantes Jiménez jessica.bogantes@librosparatodos.cr

bottom of page